
1

MetaMap Candidate Retrieval

Alan R. Aronson

July 13, 2001

1. Overview

This paper describes the methodology used by MetaMap to retrieve strings from the UMLS Meta-
thesaurus as candidates for text mappings. Candidate retrieval occurs after parsing and variant
generation. At that time the SPECIALIST parser has segmented incoming text into phrases each
of which is analyzed independently. And variants have been computed for the words in a given
phrase. Finding all Metathesaurus strings with at least one phrase variant in an efficient manner is
the goal of candidate retrieval. Considerations such as the degree of focus of the search (browsing
vs. semantic mode) and whether or not to respect word order affect the methods used and there-
fore the efficiency of the process.

2. Candidate Retrieval

The process for retrieving Metathesaurus candidates is described by defining the input to the pro-
cess, describing the algorithm, and indicating how several MetaMap options affect the process.
Throughout the descriptions, a text fragment The effect of obstructive sleep apnea is used for
illustration.

2.1 Input
Input to candidate retrieval consists of a phrase and its variants. The text fragment mentioned
above has two phrases, The effect and of obstructive sleep apnea. The second phrase has parse
shown in Figure 1 consisting of two syntactic elements, a preposition and a head, each of which

[prep([lexmatch([of]), inputmatch([of]), tag(prep), tokens([of])]),
head([lexmatch([obstructive sleep apnea]),

inputmatch([obstructive,sleep,apnea]), tag(adj),
tokens([obstructive,sleep,apnea])])

]

Figure 1. The parse for the phrase of obstructive sleep apnea

MetaMap Candidate Retrieval 2

2. Candidate Retrieval

has information about a matching lexical entry, matching input text, the tag assigned by the tag-
ger, and the individual text tokens for the element. Note that obstructive sleep apnea is a single,
multi-word lexical entry and that the (erroneous) tag of adj for it is obtained from the tag for
obstructive. (This will be corrected in the near future.)

Before computing variants for a phrase, it is filtered by removing the following syntactic ele-
ments: aux, compl, conj, det, modal, prep, pron, punc. These elements do not normally contribute
to the mapping process. In the case of the phrase of obstructive sleep apnea, of is filtered out.
Variants are now computed starting with the variant generators for the phrase. Variant generators
are any multi-word sequence of words which occurs in the lexicon and any single word. The vari-
ant generators for our example phrase are the multi-word items obstructive sleep apnea and sleep
apnea and the single words obstructive, sleep and apnea. The variants computed from these gen-
erators are shown in Figure 2. They are organized by generator and part of speech so that, for

example, there are both verb and noun variants for sleep.1 In the figure, each variant is listed with
its part of speech and its derivational score and history, i.e. how it was derived from its generator.
Each step in a variant’s history is either a spelling variant (history “p” and score 0), an inflection
(history “i” and score 1), a synonym (history “s” and score 2), an acronym/abbreviation (history
“a” and score 2), an expansion of an acronym/abbreviation (history “e” for score 2), or a deriva-
tional variant (history “d” and score 3). A variant’s total derivational score is the sum of the scores
for each step in the history. Note that the null history, representing the variant itself, is denoted [].
The actual representation of variants uses v/6 terms with arguments the variant, itself, its part of

1. Note that if the category for sleep were known to be one of verb or noun, only those variants would be used. In this
case, sleep inherits the adj category from obstructive sleep apnea. Since sleep has no adj category, all of its categories
are used.

obstructive sleep apnea [noun] variants (n=5):
obstructive sleep apnea{[noun], 0=[]} obstructive sleep apneae{[noun],

1=“i”} obstructive sleep apneas{[noun], 1=“i”} osa{[noun], 2= “a”}
osa’s{[noun], 3=“ai”}

obstructive [adj] variants (n=1):
obstructive{[adj], 0=[]}

sleep apnea [noun] variants (n=2):
sleep apnea{[noun], 0=[]} sleep apnoea{[noun], 0=“p”}

sleep [verb] variants (n=5):
sleep{[verb], 0=[]} sleeper{[noun], 3=“d”} sleepers{[noun], 4= “di”} sleep-

ing{[verb], 1=“i”} sleeps{[verb], 1=“i”}

sleep [noun] variants (n=5):
hypnic{[adj], 2=“s”} sleep{[noun], 0=[]} sleeplessness{[noun], 3=“d”}

sleepy{[adj], 3=“d”} somnus{[noun], 2=“s”}

apnea [noun] variants (n=3):
apnea{[noun], 0=[]} apneas{[noun], 1=“i”} apnoea{[noun], 0=“p”}

Figure 2. The variants for the phrase of obstructive sleep apnea

2. Candidate Retrieval

MetaMap Candidate Retrieval 3

speech, its derivational score and history, its base forms, and its distance from the right end of the
phrase. Knowing the distance from the right end of the phrase allows the use of smaller indexes
for searching, at least when overmatches are not allowed. For instance, if the distance is 1, then
the table first_words_of_one, which contains only single-word concepts, is used to search for
matching Metathesaurus strings. Examples of the complete representation for variants are

v(apneas,[noun],1,“i”,[apnea,apnoea],1),
v(obstructive sleep apneas,[noun],1,“i”,[obstructive sleep apnea],3),and
v(sleepers,[noun],4,“di”,[sleeper],2).

In order to efficiently access variant information during the evaluation process, the list is reorga-
nized into an AVL tree according to the first word of the variants. This is shown in Figure 3. Each

apnea
 vinfo: apnea, [3,3], yes, apnea, [apnea]
apneas
 vinfo: apnea, [3,3], yes, apneas, [apneas]
apnoea
 vinfo: apnea, [3,3], yes, apnoea, [apnoea]
hypnic
 vinfo: sleep, [2,2], yes, hypnic, [hypnic]
obstructive
 vinfo: obstructive, [1,1], yes, obstructive, [obstructive]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apneas,

[obstructive,sleep,apneas]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apneae,

[obstructive,sleep,apneae]
 vinfo: obstructive sleep apnea, [1,3], yes, obstructive sleep apnea,

[obstructive,sleep,apnea]
osa
 vinfo: obstructive sleep apnea, [1,3], yes, osa’s, [osa]
 vinfo: obstructive sleep apnea, [1,3], yes, osa, [osa]
sleep
 vinfo: sleep, [2,2], yes, sleep, [sleep]
 vinfo: sleep, [2,2], yes, sleep, [sleep]
 vinfo: sleep apnea, [2,3], yes, sleep apnoea, [sleep,apnoea]
 vinfo: sleep apnea, [2,3], yes, sleep apnea, [sleep,apnea]
sleeper
 vinfo: sleep, [2,2], yes, sleeper, [sleeper]
sleepers
 vinfo: sleep, [2,2], yes, sleepers, [sleepers]
sleeping
 vinfo: sleep, [2,2], yes, sleeping, [sleeping]
sleeplessness
 vinfo: sleep, [2,2], yes, sleeplessness, [sleeplessness]
sleeps
 vinfo: sleep, [2,2], yes, sleeps, [sleeps]
sleepy
 vinfo: sleep, [2,2], yes, sleepy, [sleepy]
somnus
 vinfo: sleep, [2,2], yes, somnus, [somnus]

Figure 3. Variants for the phrase of obstructive sleep apnea organized by first word

MetaMap Candidate Retrieval 4

2. Candidate Retrieval

variant is represented by a vinfo/5 predicate indicating the variant’s generator, the position of the
generator in the phrase, whether the generator involves the head of the phrase,1 the variant, itself,
and a list of its words. As in Figure 2, the basic information about a generator or variant is actually
represented by a v/6 term.

2.2 The Algorithm
Given the variants for some input text, retrieving Metathesaurus strings is fairly straightforward.
For each variant of each generator, compute the candidate Metathesaurus strings by performing
the steps:

• Extract the variant and its distance from the right of the text from its full representation (the first
and last arguments of v/6). This is the only information needed to retrieve strings containing the
variant;

• If the stop_large_n option is in effect, stop out the following variants:
prepositions, conjunctions and determiners as specified by

nls_strings:prep_conj_det_atom/1, and
single-character variants with more than 2,000 occurrences and two-character variants
with more than 1,000 occurrences (according to the first_words_counts table) where
the occurrence values are subject to change as the Metathesaurus grows;

• Retrieve strings from the appropriate table:
if the allow_overmatches option is in effect, use all_words,
otherwise, if the allow_concept_gaps option is in effect, use first_words,
otherwise, if the distance from the right is 1, use first_words_of_one,
otherwise, if the distance from the right is 2, use first_words_of_two,
otherwise, use first_words;

• Filter the results to those for which the entire variant occurs in the string (where words used for
comparison of both multi-word variants and Metathesaurus strings are determined by the
MetaMap tokenization regime encoded in metamap_tokenization:tokenize_text_mm/2):

if the all_words table was used to retrieve the string, then the variant words must only be
a subsequence of the string words,
otherwise, the variant words must be a prefix of the string words;

Finally, candidates for all variants are sorted (to remove duplicates). Note that the actual form of
each candidate is a usc/3 term with arguments the list of words (determined by MetaMap tokeni-
zation) for the string, the string, itself, and the string’s concept. For example, the candidates for
the variant osa (which has distance from the right of 3) are shown in Figure 4. Note that normally
the string and concept are the same, but in the last case the string ‘OSA - Obstructive sleep
apnoea’ has concept ‘Sleep Apnea, Obstructive’.

Because a given variant can appear more than once in the list of variants for all generators (e.g.,
sleep in our example), some mechanism (e.g., caching) can be used to avoid duplicating effort

1. It is somewhat surprising that all variants involve the head of the phrase, but this is because the head of the phrase
consists of all three words obstructive, sleep and apnea. And this is due to the fact that the lexicon has a single entry
for obstructive sleep apnea in addition to entries for each individual word. It will soon be the case that such multi-
word lexicon entries will be ignored for MetaMap processing. When this happens the head will be apnea, and vari-
ants of obstructive and sleep will no longer be said to involve the head.

2. Candidate Retrieval

MetaMap Candidate Retrieval 5

2.3 Options affecting the algorithm
The following options have an effect on the candidate retrieval process:

• -o --allow_overmatches and -g --allow_concept_gaps: these options affect which table
is used to do actual retrieval of Metathesaurus strings;

• -l --stop_large_n: this option affects whether short variants or some content
free words occurring in many Metathesaurus strings are ignored;

• -z --term_processing, -i --ignore_word_order, -Y --prefer_multiple concepts,

and -P --composite_phrases: these options have an indirect effect in that they affect either
the parsing that precedes candidate retrieval, the evaluation that follows retrieval, or both.

usc([osa,antigen],OSA antigen,OSA antigen)

usc([osa,gene,product],osa gene product,osa gene product)

usc([osa,protein],osa protein,osa protein)

usc([osa,obstructive,sleep,apnea],OSA - Obstructive sleep apnea,Sleep
Apnea, Obstructive)

usc([osa,obstructive,sleep,apnoea],OSA - Obstructive sleep apnoea,Sleep
Apnea, Obstructive)

Figure 4. Candidate Metathesaurus strings for the variant osa

